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ABSTARCT: 
In this paper, discrete wavelet transform (DWT) for noise removal has been studied over four different 
types of synthetic data. These are blocks signal, bumps signal, doppler signal and heavy sine signal. These 
signal sets are first corrupted with white noise and then DWT is used for noise removal. The impact of 
different levels of decomposition along with the type of thresholding criterion, hard or soft, over output 
signal to noise ratio (SNR) and mean square error is presented. The waveforms of original and 
reconstructed signals for all levels of decomposition is also presented in the paper. All simulations are 
done in MATLAB. 
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1. INTRODUCTION 

Role of signals and systems is important in all aspects of modern technologies. However, a certain amount of 
unwanted signal i.e., noise is always introduced in digital signals. The noise is generally introduced while 
acquisition and transmission of data signals.  
Introduction of noise in any signal degrades the quality of signal as well as the information content of the signal 
is lost to some extent. Hence, it is highly necessary to remove noise from the signal so that the information can 
be recovered from it. This type of signal restoration which is associated with an attempt of removal of noise 
from a signal is known as denoising. Noise is considered to have higher frequencies compared to signal. Hence, 
filtering was the most popular technique applied for denoising applications. Different linear and non-linear 
filters are proposed by researchers. Some examples of filters are mean filter, median filter, least mean square 
(LMS) filter, wiener filter, etc. Research in this field has led to development of new denoising techniques such 
as optimal estimate methods, spectral subtraction methods, general and genetic matching pursuit methods. 
However, the newest approach in this field is denoising using wavelet transform method. 
The traditional methods for denoising were based on the Fourier transformation and the short-time Fourier 
transformation [13] but the analysis effects of them were not good enough as the requirement was time 
frequency representation of signal. In Fourier transformation, the signal analysis is done completely in 
frequency domain. It can only analyze what frequency components exist in the signal. Hence, the time and 
frequency information could not be analyzed at the same time. The concept of short-time Fourier transformation 
(STFT) analysis is a bit different and comparatively better. It used the concept of windowing the signal i.e., 
analyzing only a small section of the signal at a time. 
To overcome the resolution problem in traditional approaches, the wavelet transform was introduced. The 
wavelet transformation is a time-frequency signal analysis tool having characteristics of Multi-resolution 
Analysis (MRA) [12]. It has an ability to represent signal's partial characteristic in both time and frequency 
domain. Hence, it is a kind of time-frequency localization analysis method. Another characteristic of wavelet 
transform is that the width of window function is variable. The window function is known as mother wavelet (a 
signal with tiny oscillations and which does not lasts forever). Hence, the wavelet transform is translated and 
dilated version of a mother wavelet. 
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The discrete wavelet transform and it's variants is based on dyadic decomposition of a input signal into 
approximation and detail coefficients. Based on the methodology employed in decomposition of signals, 
wavelet transform may be termed as Discrete Wavelet Transform (DWT) or Discrete Wave Packet Transform 
(DWPT) [11] [12]. In DWT, only the approximation coefficients at each level are further decomposed. In 
DWPT, detail coefficients along with approximation coefficients are decomposed. Discrete wavelet transform 
(DWT) is a powerful tool using multi-resolution analysis (MRA) to analyze a signal. It has been used in speech 
recognition systems, signal and image compression and denoising. 

2. METHODOLOGY 

The basic methodology is used in noise removal in wavelet domain is shown in Figure 1. 

2.1. Forward Transform 

Input signal is transformed to wavelet domain using discrete wavelet transform.  

2.2. Threshold Calculation 

Removal of noise from a signal using wavelets is based on thresholding technique called wavelet thresholding. 
It is a non-linear technique. In this, some of the wavelet decomposed coefficients particularly detail coefficients 
which contain noise elements which are less than a predefined or dynamically computed threshold are made 
zero. Hence, this process is also known as wavelet shrinking [1]. Selecting an appropriate threshold is a topic of 
utmost importance as the efficiency of the algorithm entirely depend on its selection [2]. 
 

 
Fig. 1.  Methodology 
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Global and Level dependent Threshold  
The calculation of threshold may or may not depend on the decomposition levels. If a threshold value   is 
selected for each decomposition level  , then the threshold is said to be level dependent threshold. However, if a 
same threshold value is calculated for coefficients at all levels, then the threshold is termed as global threshold 
[3] [14]. 
Various functions have been proposed to calculate an appropriate threshold value. Most accepted of those 
include VisuShrink and SureShrink. These are explained below. 
 
VisuShrink 
VisuShrink was introduced by Donoho [6]. It uses a threshold value t  that is proportional to the standard 
deviation of the noise. It follows the hard thresholding rule. It is defined as:  

 2logt nσ= . (1) 

2σ  is the noise variance present in the signal and   represents the signal size or number of samples. An estimate 
of the noise level   was defined based on the median absolute deviation given by:  

 �
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where 1,j kd −  corresponds to the detail coefficients in the wavelet transform. 

VisuShrink can be viewed as general-purpose threshold selector which provide near optimal error properties. It 
also ensures that the estimates are as smooth as the true underlying functions. 
 
Major drawbacks of VisuShrink include overly smoothed reconstructed signals as it removes too many 
coefficients, only applicable to signal corrupted with AWGN, and following of global thresholding scheme. 
 
SureShrink 
A threshold chooser based on Stein’s Unbiased Risk Estimator (SURE) was proposed by Donoho and Johnstone 
[6] and is called as SureShrink. It is a combination of the universal threshold and the SURE threshold. This 
method specifies a threshold value for each resolution level in the wavelet transform which is referred to as level 
dependent thresholding. The goal of SureShrink is to minimize the mean squared error, defined as 
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where ( , )z x y  is the estimate of the signal while ( , )s x y  is the original signal without noise and n  is the 

length of the signal. SureShrink suppresses noise by thresholding the empirical wavelet coefficients.  
 

The SureShrink threshold t∗  is defined as 

 min( , 2 log )t t nσ∗ = . (4) 

where t denotes the value that minimizes Stein’s Unbiased Risk Estimator, σ  is the noise variance computed as 
in case of VisuShrink, and n  is the length of the signal. The thresholding employed is adaptive, i.e., a threshold 
level is assigned to each dyadic resolution level by the principle of minimizing the Stein’s Unbiased Risk 
Estimator for threshold estimates. It is smoothness adaptive which means that if the unknown function contains 
abrupt changes in the signal, the reconstructed signal also does. 
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2.3. Threshold Application 

After calculating a threshold value, a thresholding function ( )f x  is required which is applied to threshold the 

coefficients. This function is dependent upon the threshold value t . There are two general categories to 
threshold function. They are hard threshold and soft threshold functions [8]. The hard threshold function [7] can 
be expressed as: 

 ( )
0h
x x t

f x
otherwise





≥= . (5) 

Hard threshold function is known to retain the sharp features of the signal however, it may mistake noise for 
true signal. 
The soft threshold function [5] can be expressed as: 

 
( )

( )
0

s
sign x x t x t
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Soft Threshold function is known to perform well in smooth regions but it over smooth sharp features. Hence 
the sharp characteristics of signal are lost. 
 
Therefore, a new threshold function, hard-soft threshold was presented which unifies soft and hard threshold and 
may retain the chief signal features and at the same time, be possible to meet the smoothness requirements. The 
expression for hard-soft threshold is given below: 
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The parameter α  (scaling factor) defines the boundary between the hard and soft thresholding.  If 1α = , the 

function follow soft threshold while 0α =  follow hard threshold. The choice of 0< 1α <  tend to overcome the 
drawbacks of both hard and soft threshold functions. 
 
The different threshold functions are shown in Figure 2. It can be inferred that hard threshold function keeps all 

the values of the signal for x t≥  while completely removes all other values. Soft threshold function works 

similar to hard threshold except that it scales down the values. Hard soft threshold function provides a 
compromise between the other functions.  

 
 

 
Fig. 2.  Different threshold functions 
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3. SIMULATION SETUP 

Four simulated signals are used for experimentation purpose. They are corrupted with additive white noise 
resulting in a noisy signal. Figure 3 show the four  signals used, and Figure 4 show the corresponding noisy 
signals obtained. 
 

 

 

a      b 

 

c      d 

Fig. 3.  Simulated Reference Signals (a) Blocks (b) Bumps (c) Doppler (d) Heavy Sine 
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To compare the performance of proposed threshold selection algorithms and wavelet decomposition algorithms 
for one dimensional data, few parameters [9] [10] have to be computed for each case. The signal notations 
followed in this text are tabulated in Table 1.  
 
 
 
 
 

 

 

a      b 

 

c      d 

Fig. 4.  Simulated Noisy Signals (a) Blocks (b) Bumps (c) Doppler (d) Heavy Sine 
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Table 1.  Signal notations. 

Notation Signal 

[ ]s n  Reference Signal 

[ ]w n  Noise signal 

[ ]z n  Noisy Signal 

[ ]y n  Reconstructed Signal 

 
 
Input Signal to Noise Ratio:  
It is defined as  
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Output Signal to Noise Ratio:  
It is defined as  
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o
SNR  should always be greater than 

i
SNR . Higher the 

o
SNR compared to 

i
SNR , better the algorithm. 

 
Mean Square Error:  
It is defined as  

 [ ] [ ]{ }2

1

1 N

i

s i y i
N

ε
=

= −∑ . (9) 

Mean square error value should be minimum for better algorithm.  
 
The wavelets used for evaluation purposes are haar for blocks and db8 for rest signals. The threshold selector 
used is universal threshold selector or VisuShrink. Different decomposition levels are also compared for 
performance evaluation which are 4, 5, 6, 7, 8 and 9. The results for soft and hard thresholding criterion are also 
compared. 

4. RESULTS AND DISCUSSION 

 
The results are compiled for each signal discussed in previous section one by one. First, the results of denoising 
noisy Blocks signal, Bumps signal, Doppler signal, Heavy Sine signal for all levels of decomposition are shown 
in figures 5, 6, 7 and 8. 
The computed performance parameters are listed in Table 2. 
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Fig. 5.  Denoising results for Noisy Blocks signal. 
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Fig. 6.  Denoising results for Noisy Bumps signal. 
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Fig. 7.  Denoising results for Noisy Doppler signal. 
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Fig. 8. Denoising results for Noisy Heavy Sine signal. 
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Table 2.  Performance Parameters. 

Decomposition Levels iSNR  
0SNR  Mean Square Error 

Soft  
Threshold 

Hard  
Threshold 

Soft  
Threshold 

Hard  
Threshold 

 
Noisy Blocks Signal 

4 20.53044 31.48765 27.18516 0.078079 0.20885 

5 20.53044 33.44806 26.73679 0.049703 0.23074 

6 20.53044 35.03504 26.36002 0.034485 0.250191 

7 20.53044 35.79701 25.87709 0.028934 0.278555 

8 20.53044 36.07692 25.47609 0.027127 0.302718 

9 20.53044 36.13255 25.08213 0.026782 0.330014 

 
Noisy Bumps Signal 

4 18.28755 28.67674 28.2855 0.090823 0.099367 

5 18.28755 28.75359 25.60415 0.089177 0.183502 

6 18.28755 27.90432 22.99783 0.108401 0.329285 

7 18.28755 27.62304 21.68634 0.115641 0.436934 

8 18.28755 27.41755 20.91398 0.121234 0.513478 

9 18.28755 27.41336 20.54881 0.121347 0.548824 

 
Noisy Doppler Signal 

4 16.2299 28.61423 28.61423 0.057789 0.057789 

5 16.2299 31.22018 31.1995 0.031691 0.031841 

6 16.2299 31.49929 26.86191 0.029703 0.085249 

7 16.2299 30.83562 24.1856 0.034601 0.153208 

8 16.2299 30.89928 22.90482 0.034099 0.201017 

9 16.2299 30.77057 22.14459 0.035123 0.237039 

 
Noisy Heavy Sin Signal 

4 17.17217 28.18741 28.18741 0.080296 0.080296 

5 17.17217 30.15914 29.43562 0.050964 0.060184 

6 17.17217 30.47433 29.10857 0.047375 0.064838 

7 17.17217 30.3091 28.00843 0.049197 0.083425 

8 17.17217 29.77172 26.48552 0.05566 0.118212 

9 17.17217 29.70984 25.91715 0.056456 0.133977 

 
 
Various conclusions can be drawn from the results. The impact of hard and soft threshold functions can be 
summarized as below: 
(1) Soft Thresholding performs well in smooth regions. 
(2) Soft Thresholding over smooths sharp features hence the sharp characteristics of signal are lost. 
(3) Hard thresholding retains the sharp features of the signal. 
(4) Hard thresholding may mistake noise for true signal. 



 E-ISSN: 2321–9637 
        Volume 2, Issue 1, January 2014 

   International Journal of Research in Advent Technology 
       Available Online at: http://www.ijrat.org 

 
 

 228 

 
 

Also, on increasing the decomposition levels of the signal, the performance drops for soft threshold function 
while it rises up to a certain level and then drops a little and finally saturates for hard threshold function. MSE 
performance shown by the algorithm in almost all the cases is quite good which can be inferred from Table 2. 
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