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ABSTARCT:

In this paper, discrete wavelet transform (DWT) for noise removal has been studied over four different
types of synthetic data. These are blocks signal, bumps signal, doppler signal and heavy sine signal. These
signal sets are first corrupted with white noise and then DWT is used for noise removal. The impact of
different levels of decomposition along with the type of thresholding criterion, hard or soft, over output
signal to noise ratio (SNR) and mean square error is presented. The waveforms of original and
reconstructed signals for all levels of decomposition is also presented in the paper. All simulations are
donein MATLAB.
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1. INTRODUCTION

Role of signals and systems is important in alleasp of modern technologies. However, a certainuamnof
unwanted signal i.e., noise is always introducedligital signals. The noise is generally introducehlile
acquisition and transmission of data signals.

Introduction of noise in any signal degrades thaliuof signal as well as the information contefthe signal

is lost to some extent. Hence, it is highly necgssaremove noise from the signal so that therimfation can
be recovered from it. This type of signal restanativhich is associated with an attempt of removfahase
from a signal is known as denoising. Noise is ader®d to have higher frequencies compared to sigtsice,
filtering was the most popular technique applied denoising applications. Different linear and rimear
filters are proposed by researchers. Some exampplBkers are mean filter, median filter, least anesquare
(LMS) filter, wiener filter, etc. Research in tHisld has led to development of new denoising témples such
as optimal estimate methods, spectral subtractiethods, general and genetic matching pursuit method
However, the newest approach in this field is dgingi using wavelet transform method.

The traditional methods for denoising were basedhan Fourier transformation and the short-time kour
transformation [13] but the analysis effects ofnth&vere not good enough as the requirement was time
frequency representation of signal. In Fourier sfamation, the signal analysis is done completialy
frequency domain. It can only analyze what freqyeoomponents exist in the signal. Hence, the time a
frequency information could not be analyzed atsthime time. The concept of short-time Fourier tramsétion
(STFT) analysis is a bit different and comparativieétter. It used the concept of windowing the slgre.,
analyzing only a small section of the signal dtreet

To overcome the resolution problem in traditionpp@aches, the wavelet transform was introducea Th
wavelet transformation is a time-frequency signablgsis tool having characteristics of Multi-redona
Analysis (MRA) [12]. It has an ability to represesignal's partial characteristic in both time anglgtiency
domain. Hence, it is a kind of time-frequency lixation analysis method. Another characteristiovai/elet
transform is that the width of window function iariable. The window function is known as mother alat/(a
signal with tiny oscillations and which does nddttaforever). Hence, the wavelet transform is teded and
dilated version of a mother wavelet.
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The discrete wavelet transform and it's variantbased on dyadic decomposition of a input sign& in
approximation and detail coefficients. Based on thethodology employed in decomposition of signals,
wavelet transform may be termed as Discrete Wavietesform (DWT) or Discrete Wave Packet Transform
(DWPT) [11] [12]. In DWT, only the approximation efficients at each level are further decomposed. In
DWPT, detail coefficients along with approximatioaefficients are decomposed. Discrete wavelet fioams
(DWT) is a powerful tool using multi-resolution dysis (MRA) to analyze a signal. It has been usedpeech
recognition systems, signal and image compressidrdanoising.

2. METHODOLOGY

The basic methodology is used in noise removalawelet domain is shown in Figure 1.
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Fig. 1. Methodology

Input signal is transformed to wavelet domain uslisgrete wavelet transform.

2.2. Threshold Calculation

Removal of noise from a signal using wavelets sebaon thresholding technique called wavelet thuleltg.

It is a non-linear technique. In this, some of Wavelet decomposed coefficients particularly detaéfficients
which contain noise elements which are less thamedefined or dynamically computed threshold arelena
zero. Hence, this process is also known as washtatking [1]. Selecting an appropriate threshaslé itopic of
utmost importance as the efficiency of the algonitbntirely depend on its selection [2].
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Global and Level dependent Threshold

The calculation of threshold may or may not dependthe decomposition levels. If a threshold valuis
selected for each decomposition level , thenhbeshold is said to be level dependent threshobdveder, if a
same threshold value is calculated for coefficiexttall levels, then the threshold is termed adalthreshold
[3] [14].

Various functions have been proposed to calculateagpropriate threshold value. Most accepted ofeho
include VisuShrink and SureShrink. These are erpthbelow.

VisuShrink
VisuShrink was introduced by Donoho [6]. It usesheeshold valuet that is proportional to the standard
deviation of the noise. It follows the hard threslg rule. It is defined as:

t=04/2logn. (1)

0? is the noise variance present in the signal ar@resents the signal size or number of samplegstimate
of the noise level was defined based on the meatigolute deviation given by:

median({[d; 4,:k=0,1,...27% - })
0.6745 |

where dj—l,k corresponds to the detail coefficients in the vetveansform.

o=

@)

VisuShrink can be viewed as general-purpose thiéste@ector which provide near optimal error prdiest It
also ensures that the estimates are as smootk &si¢hunderlying functions.

Major drawbacks of VisuShrink include overly smadhreconstructed signals as it removes too many
coefficients, only applicable to signal corrupteithwAWGN, and following of global thresholding sahe.

SureShrink

A threshold chooser based on Stein’s Unbiased Rs$iknator (SURE) was proposed by Donoho and Johasto
[6] and is called as SureShrink. It is a combimatid the universal threshold and the SURE threshblds
method specifies a threshold value for each resollgvel in the wavelet transform which is refefte as level
dependent thresholding. The goal of SureShrin& imihimize the mean squared error, defined as

n

1
MSE=— z (z(x,y)—s(x,y))z. 3
X,y=1
where Z(X, y) is the estimate of the signal whi&(X, Y¥) is the original signal without noise arfl is the
length of the signal. SureShrink suppresses ngigbaresholding the empirical wavelet coefficients.

The SureShrink threshorbD is defined as

t” = min(t,o/2logn ). 4)

where t denotes the value that minimizes Stein’bitBed Risk EstimatorJ is the noise variance computed as
in case of VisuShrink, anfl is the length of the signal. The thresholding eyed is adaptive, i.e., a threshold
level is assigned to each dyadic resolution lewelthe principle of minimizing the Stein’s Unbias&isk
Estimator for threshold estimates. It is smoothraetptive which means that if the unknown functiontains
abrupt changes in the signal, the reconstructethkajso does.
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2.3. Threshold Application

After calculating a threshold value, a thresholdiungction f (x) is required which is applied to threshold the

coefficients. This function is dependent upon thesghold valuet. There are two general categories to
threshold function. They are hard threshold antitsoéshold functions [8]The hard threshold function [7] can
be expressed as:

X X2t
fr(X) = 8 . ®)
0 otherwise
Hard threshold function is known to retain the phgatures of the signal however, it may mistakisendor
true signal.
The soft threshold function [5] can be expressed as
sign(x)||x -t >t
0 =) SON-t] Xzt ©)

0 otherwise

Soft Threshold function is known to perform wellsmooth regions but it over smooth sharp featuresice
the sharp characteristics of signal are lost.

Therefore, a new threshold function, hard-softghodd was presented which unifies soft and harestiold and
may retain the chief signal features and at theestine, be possible to meet the smoothness regeiresmThe
expression for hard-soft threshold is given below:

= SOOM-at] =t ©)
s 0 otherwise

The parameterr (scaling factor) defines the boundary betweenhtr@l and soft thresholding. & =1, the

function follow soft threshold whiler = O follow hard threshold. The choice 6ka <1 tend to overcome the
drawbacks of both hard and soft threshold functions

The different threshold functions are shown in FégR. It can be inferred that hard threshold fuorckeeps all
the values of the signal fdb(| =1 while completely removes all other values. Sofeghold function works

similar to hard threshold except that it scales maie values. Hard soft threshold function provides
compromise between the other functions.
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Fig. 2. Different threshold functions
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3. SSIMULATION SETUP

Four simulated signals are used for experimentgpiorpose. They are corrupted with additive whités@o
resulting in a noisy signal. Figure 3 show the fosignals used, and Figure 4 show the corresponuimngy
signals obtained.
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Fig. 3. Simulated Reference Signals (a) BlockB(mnps (c) Doppler (d) Heavy Sine
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Fig. 4. Simulated Noisy Signals (a) Blocks (b) Basfc) Doppler (d) Heavy Sine
To compare the performance of proposed threshddettsen algorithms and wavelet decomposition aliponis

for one dimensional data, few parameters [9] [1&ehto be computed for each case. The signal ootati
followed in this text are tabulated in Table 1.
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Table 1. Signal notations.

Notation Signal
s[n] Reference Signal
W[n] Noise signal
z[n] Noisy Signal
y[n] Reconstructed Signal

Input Signal to Noise Ratio:
It is defined as

N or.
NR =10log, M )

Yowlil)

Output Signal to Noise Ratio:
It is defined as

totoa | ZYIl ] .
R SR ©

S\R should always be greater th&\R . Higher theSNR compared toS\NR , better the algorithm.

Mean Square Error:
It is defined as

13 . 2
&= 2{slil-v[Il}"- ©
i=1
Mean square error value should be minimum for betggorithm.

The wavelets used for evaluation purposes are foadrlocks and db8 for rest signals. The threstsaibctor
used is universal threshold selector or VisuShribkferent decomposition levels are also compared f
performance evaluation which are 4, 5, 6, 7, 8&rithe results for soft and hard thresholding doteare also
compared.

4. RESULTSAND DISCUSSION

The results are compiled for each signal discugs@devious section one by one. First, the resaflidenoising
noisy Blocks signal, Bumps signal, Doppler sigi#avy Sine signal for all levels of decompositioa shown
in figures 5, 6, 7 and 8.

The computed performance parameters are listedteT2.
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Fig. 5. Denoising results for Noisy Blocks signal.
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Fig. 6. Denoising results for Noisy Bumps signal.
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Fig. 7. Denoising results for Noisy Doppler signal
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Fig. 8. Denoising results for Noisy Heavy Sine sign
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Table 2. Performance Parameters.

NR, M ean Square Error
Decomposition Levels | SNR Sort Hard ot Hard
Threshold | Threshold | Threshold | Threshold

Noisy Blocks Signal
4 20.53044{ 31.48764 27.1851p  0.078079 0.20885
5 20.53044 33.44804 26.73679  0.049703 0.23074
6 20.53044{ 35.03504 26.3600R  0.034485 0.250191
7 20.53044{ 35.79701] 25.87709  0.0289B84  0.278%55
8 20.53044f 36.07692 25.47609  0.0271R7  0.302718
9 20.53044f 36.13255 25.0821383 0.026782  0.330014

Noisy Bumps Signal
4 18.28755 28.67674 28.2855 0.090823  0.099367
5 18.28755 28.75359 25.60415  0.0891f7  0.183%02
6 18.28755 27.90432 22.99783  0.1084p1  0.329285
7 18.28755 27.62304 21.68634  0.115641  0.436934
8 18.28755 27.41755 20.91398 0.1212B4  0.513478
9 18.28755 27.4133§ 20.54881  0.121347 0.548824

Noisy Doppler Signal
4 16.2299| 28.61423 28.61423 0.057789  0.0577189
5 16.2299| 31.22018 31.1995 0.031691  0.031841
6 16.2299| 31.49929 26.86191  0.029703  0.085249
7 16.2299| 30.83562 24,1856 0.034601  0.153208
8 16.2299| 30.89928  22.9048p  0.034099  0.201017
9 16.2299| 30.770571 22.14459  0.035123  0.237039

Noisy Heavy Sin Signal

4 17.17217| 28.18741 28.18741  0.080206  0.080296
5 17.17217| 30.15914 29.43562  0.050964 0.060184
6 17.17217| 30.47433 29.10857  0.0473f5 0.064838
7 17.17217 30.3091 28.00848  0.049197  0.083425
8 17.17217| 29.77172  26.4855Q2 0.05566 0.118212
9 17.17217| 29.70984 25.91715 0.056456  0.133977

Various conclusions can be drawn from the resdltse impact of hard and soft threshold functions ban
summarized as below:

(1) Soft Thresholding performs well in smooth regions.

(2) Soft Thresholding over smooths sharp features hftreceharp characteristics of signal are lost.

(3) Hard thresholding retains the sharp features ositpeal.

(4) Hard thresholding may mistake noise for true signal
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Also, on increasing the decomposition levels of skgnal, the performance drops for soft threshaidcfion
while it rises up to a certain level and then dragitle and finally saturates for hard threshfidction. MSE
performance shown by the algorithm in almost &l ¢hses is quite good which can be inferred frobielra.
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